Congruence 5-permutability is not join prime

G. Gyenizse, M. Maróti and L. Zádori

University of Szeged

Boulder, May 20-24, 2019.

Definition

A variety \mathcal{V} is congruence *n*-permutable $(n \ge 2)$ if every algebra $\mathbf{A} \in \mathcal{V}$ satisfies $\alpha \circ^n \beta = \beta \circ^n \alpha$ for all congruences $\alpha, \beta \in \text{Con}(\mathbf{A})$.

- 5-permutability: $\alpha \circ \beta \circ \alpha \circ \beta \circ \alpha = \beta \circ \alpha \circ \beta \circ \alpha \circ \beta$.
- Congruence 2-permutability: α ∘ β = β ∘ α
 Examples: groups, rings, varieties with a Maltsev-term:

$$m(x, y, y) \approx m(y, y, x) \approx x, \qquad m(x, y, z) = xy^{-1}z,$$

 $(x,z) \in \alpha \circ \beta \Rightarrow x \alpha y \beta z \Rightarrow x \beta m(x,y,z) \alpha z \Rightarrow (x,z) \in \beta \circ \alpha$

• Variety of lattices is not congruence *n*-permutable for any *n*:

$$1 \quad \alpha = \{(0, a), (b, 1), \dots\},\$$

$$\beta = \{(a, b), \dots\},\$$

$$a \quad \alpha = \{(0, a), (b, 1), \dots\},\$$

$$\beta = \{(a, b), \dots\},\$$

$$a \quad \alpha = \{(0, a), (b, 1), \dots\},\$$

$$\beta = \{(a, b), \dots\},\$$

$$(0, 1) \in \alpha \circ \beta \circ \alpha,\$$

$$(0, 1) \notin \beta \circ \alpha \circ \beta.$$

- $\alpha \lor \beta = \bigcup_n \alpha \circ^n \beta$ for any $\alpha, \beta \in \operatorname{Con}(\mathsf{A})$
- $\alpha \lor \beta = \alpha \circ^n \beta$ in congruence *n*-permutable varieties
- congruence *n*-permutability implies n + 1-permutability

Theorem (J. Hagemann, A. Mitschke; 1973)

For a variety V and $n \ge 2$ the following are equivalent:

- \mathcal{V} is congruence n-permutable,
- $\varrho^{-1} \subseteq \varrho \circ^{n-1} \varrho$ for any $\mathbf{A} \in \mathcal{V}$ and reflexive relation $\varrho \leq \mathbf{A}^2$,
- \mathcal{V} has ternary terms p_1, \ldots, p_{n-1} satisfying

Corollary

 \mathcal{V} is congruence n-permutable for some n if and only if every reflexive and transitive relation $\varrho \leq \mathbf{A}^2$ of $\mathbf{A} \in \mathcal{V}$ is symmetric.

- ${\cal G}$ is the variety of groups in the language $\cdot, {}^{-1}, 1$
- \mathcal{D}_n is the variety of algebras having Hagemann-Mischke operations p_1, \ldots, p_{n-1} for congruence *n*-permutability
- \mathcal{BA} is the variety of boolean algebras with $\lor,\land,{}',0,1$
- \mathcal{BR} is the variety of boolean rings with $+,\cdot,0,1$

Interpretability: $\mathcal{D}_2 \preceq \mathcal{G}, \ \mathcal{BA} \preceq \mathcal{BR} \preceq \mathcal{BA}, \ \mathcal{D}_{n+1} \preceq \mathcal{D}_n$

Definition (W.D. Neumann, 1974)

The variety \mathcal{V} is **interpretable** in the variety \mathcal{W} (notation $\mathcal{V} \leq \mathcal{W}$) if for each f *n*-ary basic operation of \mathcal{V} there exists an *n*-ary term $t_f(x_1, \ldots, x_n)$ of \mathcal{W} such that for each algebra $\mathbf{A} = (A; \mathcal{F}) \in \mathcal{W}$ the associated algebra $\mathbf{A}' = (A; \{t_f \mid f \in \mathcal{F}\})$ is in \mathcal{V} .

- constants: use unary operations satisfying $c(x) \approx c(y)$
- ullet \preceq is a quasiorder on the class of varieties
- equi-interpretability: $\mathcal{V} \equiv \mathcal{W}$ iff $\mathcal{V} \preceq \mathcal{W} \preceq V$

Theorem

The class of varieties modulo equi-interpretability forms a bounded lattice (the lattice of interpretability types) with $\overline{\mathcal{V}} \lor \overline{\mathcal{W}} = \overline{\mathcal{V} \amalg \mathcal{W}}$ and $\overline{\mathcal{V}} \land \overline{\mathcal{W}} = \overline{\mathcal{V} \otimes \mathcal{W}}$.

Definition

The **coproduct** of the varieties $\mathcal{V} = \operatorname{Mod}(\Sigma)$ and $\mathcal{W} = \operatorname{Mod}(\Delta)$ in disjoint languages is the variety $\mathcal{V} \amalg \mathcal{W} = \operatorname{Mod}(\Sigma \cup \Delta)$.

Definition

The varietal product of \mathcal{V} and \mathcal{W} is the variety $\mathcal{V}\otimes\mathcal{W}$ of algebras $A\otimes B$ for $A\in\mathcal{V}$ and $B\in\mathcal{W}$ whose

- universe is $A \times B$,
- basic operations are s ⊗ t acting coordinate-wise for each pair of n-ary terms of V and W.

- O. Garcia, W. Taylor (1984): Lattice of interpretability types of varieties
 - minimal element: sets (equi-interpretable with semigroups)
 - maximal element: trivial algebras
 - the class of idempotent varieties form a sublattice
 - the class of finitely presented varieties forms a sublattice
 - the class of varieties defined by linear equations forms a join sub-semilattice
 - not modular
 - meet prime elements: boolean algebras, lattices, semilattices
 - meet irreducible elements: groups
 - join prime elements: commutative groupoids, trivial algebras
- J. Mycielski (1977): Lattice of interpretability types of first order theories
 - local interpretability
 - distributive

Some positive results:

- S. Tschantz (1983): congruence 2-permutability is join prime (unpublished)
- M. Valeriote, R. Willard (2014): congruence *n*-permutability is join-prime among idempotent varieties
- J. Opršal (2016): congruence *n*-permutability is join prime among varieties axiomatized by linear equations
- J. Opršal (2016); K. Kearnes, Á. Szendrei (2016): having an *n*-cube term is join prime among idempotent varieties
- L. Barto, J. Opršal, M. Pinsker (2018): congruence modularity is a prime filter among idempotent varieties

Some negative results:

• P. Marković, R. McKenzie (2008): having an *n*-ary near unanimity term is not join prime

• ...

Plan:

- Find two varieties V and W such that neither is *n*-permutable for any $n \ge 2$ but their coproduct is *n*-permutable for some *n*.
- \mathcal{V} is not *n*-permutable for any *n* if and only if it has an algebra $\mathbf{A} \in \mathcal{V}$ and a compatible poset $\varrho \leq \mathbf{A}^2$ which is not symmetric.
- Let A' be the extension of A with all order preserving operations of ρ, and let V' be the variety generated by A'.
- 𝒱' and 𝒱' are still not *n*-permutable for any *n* ≥ 2, but 𝒱 ≤ 𝒱' and 𝒱 ≤ 𝒱' so their coproduct is more likely to be *n*-permutable for some *n*.
- We need to search for posets.
- Need to understand algebras in the variety defined by a poset.
- We need to understand congruences, compatible quasiorders, reflexive relations in these varieties and in their coproduct.

Definition

Let $\mathbb{P} = (P; \leq)$ be a poset. The clone $\operatorname{Pol}(\mathbb{P})$ of **polymorphisms** of \mathbb{P} is the ranked set of order preserving maps $f : \mathbb{P}^n \to \mathbb{P}$.

- Let $\mathbb{P} = (\{0,1\}; \leq)$, $\mathbf{P} = (P; \operatorname{Pol}(\mathbb{P}))$ and $\mathcal{V} = \operatorname{HSP}(\mathbf{P})$
- $\bullet \ \wedge, \lor, 0, 1 \in \operatorname{Pol}(\mathbb{P})$ and these operations generate the clone
- P is term equivalent with the two-element bounded distributive lattice
- $\bullet \ \mathcal{V}$ is equi-interpretable with the variety of bounded distributive lattices
- \mathcal{V} is locally finite (finitely generated free algebras are finite)
- For each finite algebra $\mathbf{A} \in \mathcal{V}$ there is a finite quasiorder \mathbb{Q} such that $\mathbf{A} = \mathbb{P}^{\mathbb{Q}}$ with point-wise ops (Priestley-duality)
- What are the congruences, compatible quasiorder, compatible reflexive relations of **A**?

Theorem

Let \mathbb{P} be a finite bounded poset with a compatible near-unanimity operation, and \mathcal{P} be the corresponding finitely presented variety. Let \mathcal{M} be any variety defined by a linear Maltsev-condition that is not already satisfied by \mathcal{P} .

- Then $\mathcal{P} \amalg \mathcal{M}$ is congruence n-permutable for some $n \geq 2$.
- ② If \mathbb{P} is the 6-element poset with order $0 \le a, b \le c, d \le 1$, and $\mathcal{M} = Mod(m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x)$, then $\mathcal{P} \amalg \mathcal{M}$ is congruence 5-permutable.

Corollary

In the lattice of interpretability types

- **(**) congruence *n*-permutability for some $n \ge 2$ is not a prime filter,
- *©* congruence 5-permutability is not a join prime element.

Proof sketch of first result:

• Let $\mathbb{P} = (P; \leq)$ be the 6-element poset

- \mathbb{P} has a compatible 5-ary near-unanimity operation
- Baker-Pixley: $\operatorname{Pol}(\mathbb{P})$ is finitely generated by $p_1, \ldots p_k$
- Let \mathcal{P} be the variety generated by $\mathbf{P} = (P; p_1, \dots, p_k)$
- \mathcal{P} is congruence distributive, does not have a majority term m
- $\bullet~\textbf{P}$ is simple, has no non-trivial subalgebras, no other SI's in $\mathcal P$
- $\bullet\,$ Let ${\mathcal M}$ be the variety of algebras with majority operation

$$m(x,x,y) \approx m(x,y,x) \approx m(y,x,x) \approx x$$

• Take $\mathbf{A} \in \mathcal{P} \amalg \mathcal{M}$ and $\varrho \in \mathbf{A}^2$ that is reflexive and transitive, need to show that ϱ is symmetric

- Take a failure of *n*-permutability, e.g. $(f,g) \in \varrho \setminus \varrho^{-1}$
- Let $\mathbf{B}_0 = \mathrm{Sg}_{\mathcal{P}}(\{f, g\}), \ \mathbf{B}_1 = \mathrm{Sg}_{\mathcal{P}}(\{m(x, y, z) \mid x, y, z \in B_1\})$
- $\bullet~ \boldsymbol{B}_0$ and \boldsymbol{B}_1 are finite algebras in $\mathcal P$
- $\mathbf{B}_1 \leq_{\mathrm{sd}} \mathbf{P}^R$ for some finite set R
- B_1 is in the relational clone generated by \mathbb{P} , so it is defined by a primitive positive formula with free variable set R.
- There exists a poset $\mathbb{Q}_1 = (Q; q_1)$ such that $Q \supseteq R$ and $B_1 = \mathbb{P}^{\mathbb{Q}_1}|_R$ is the set of order preserving functions from \mathbb{Q}_1 to \mathbb{P}
- There is a quasi-order $\mathbb{Q}_0 = (\mathit{Q}; \mathit{q}_0)$ such that $\mathit{B}_1 = \mathbb{P}^{\mathbb{Q}_1}$

• Since
$$\mathbf{B}_0 \leq \mathbf{B}_1$$
 we have $q_0 \supseteq q_1$

- Projection congruences: $\eta_r = \{ (u, v) \mid u(r) = v(r) \}$ for $r \in R$
- Every congruence of ${\bf B}_0$ and ${\bf B}_1$ are product congruences, i.e., the intersection of a set of projection congruences
- $\varrho_0 = \varrho|_{B_0}$, $\varrho_1 = \varrho|_{B_1}$ are compatible quasiorders of \mathbf{B}_0 and \mathbf{B}_1
- We argue, that ϱ_0 and ϱ_1 are product quasiorders

Definition

The set of **compatible quasiorders** of an algebra **A** is

Quo(\mathbf{A}) = { $\alpha \leq \mathbf{A}^2 \mid \alpha$ is reflexive and transitive }.

- Quo(A) forms an (involution) lattice with $\alpha \wedge \beta = \alpha \cap \beta$ and $\alpha \vee \beta = \overline{\alpha \cup \beta}$, where $\overline{\alpha \cup \beta}$ is the transitive closure of $\alpha \cup \beta$.
- The set $\operatorname{Con}(A)$ of congruences forms a sublattice of $\operatorname{Quo}(A)$.

Theorem (G. Gyenizse, M. M; 2018)

- A locally finite variety V is congruence distributive if and only if it is quasiorder distributive
- A locally finite variety is congruence modular if and only if it is quasiorder modular.
- The variety of semilattices is not quasiorder meet semi-distributive (but it is congruence meet semi-distributive).
- For a finite algebra A in a congruence meet semi-distributive variety Quo(A) has no sublattice isomorphic to M₃.

• Projection quasiorders: for each $r \in R$

$$\sigma_r = \{ (u, v) \mid u(r) \le v(r) \}$$

$$\tau_r = \{ (u, v) \mid u(r) \ge v(r) \}$$

• $\eta_r = \sigma_r \wedge \tau_r$

- There are $S, T \subseteq R$ such that $\varrho_1 = (\bigwedge_{s \in S} \sigma_s) \land (\bigwedge_{t \in T} \tau_t)$
- $(g, f)
 ot\in \varrho_1$, so we can choose $s \in S \setminus T$ such that $g(s)
 ot\leq f(s)$
- The elements a, b, c, d exhibit the failure of not having a majority term: a, b ≤ m(a, b, c) ≤ c, d must hold, but there is no such element m(a, b, c)
- Find elements u_a , u_b , u_c , u_d that exhibit this behavior in **B**₀ at *s*: in the q_0 -block of *s*, u_x takes value *x*, above it it takes 1 and everywhere else it takes 0
- $u_a, u_b \sigma_s u_c, u_d$ holds in **B**₀
- Thus $u_a, u_b \sigma_s m(u_a, u_b, u_c) \sigma_s u_c, u_d$ must hold in **B**₁
- There is no such element because of coordinate s, a contradiction.

14/15

Thank You!